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Abstract

Motivated by mirror symmetry, we consider the Lagrangian fibration R4 → R
2 and Lagrangian maps

f : L ↪→ R
4 → R

2, exhibiting an unstable singularity, and study how the bifurcation locus of gradient lines,
the integral curves of ∇fx, for x ∈ B, where fx(y) = f (y) − x · y, changes when f is slightly perturbed. We
consider the cases when f is the germ of a fold, of a cusp and, particularly, of an elliptic umbilic.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This is the second of two papers motivated by the problem of quantum corrections in mirror
symmetry. More precisely, in the first part [2], we considered the torus fibration T 4 → T 2 and
a Lagrangian map f : L ↪→ T 4 → T 2 exhibiting some unstable singularity, and studied how
this singularity break when L is slightly perturbed. We defined then the gradient lines of f and
examined some of their properties. Here instead we want to analyse, in a neighbourhood of the
caustic of f, how the bifurcation locus of gradient lines changes when L is perturbed. Since the
problem is local, we can simply consider the Lagrangian fibration R

4 → R
2. The study of the

bifurcation locus of gradient lines for perturbations of f is harder than the similar one, examined
in [2], regarding the caustic: indeed, since the caustic is the set of critical values of f, the matter
is, in a sense, local, while it is global when studying bifurcations of solutions of ∇fx = 0, since
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global aspects of the flow of a vector field are involved. The problem is relatively easy for the fold
and the cusp, but it becomes much harder for perturbations of the elliptic umbilic, because, being
its bifurcation locus non-empty, its complexity increases considerably when a small perturbation
is added. The main result of this paper is Theorem 4.14, which is concerned with the bifurcation
diagram of a small perturbation of the elliptic umbilic. The study of all these cases should help
in drawing some ideas about the mutual positions of bifurcation lines and caustic.

2. The fold

The dynamical system (10) in [2], when f is the generating function (2) in [2] of the fold in
dimension 2, takes the form

dy1

dt
= y2

1 − x1,
dy2

dt
= y2 − x2 (1)

Proposition 2.1. B = ∅.

Proof. The caustic has equation x1 = 0. The vector fields (1) has respectively two, one or no
critical points, depending on whether x1 > 0, x1 = 0 or x1 < 0. If x1 > 0 the critical points are
(
√
x1, x2) and (−√

x1, x2). Linearizing the vector field in a neighbourhood of these points, we
find out that (

√
x1, x2) has two positive eingenvalues, so it is an unstable node, while (−√

x1, x2)
has a positive and a negative eigenvalue, so it is a saddle. Eq. (1) can be easily solved: there is
a gradient line from the node to the saddle, which is generic and stable, and whose image is the
segment with the node and the saddle as extremes. At x1 = 0, on the caustic, the node and the
saddle glue together in a saddle-node. �

3. The cusp

For the cusp

f (y1, y2) = 1
4y

4
1 + y2

1y2 + 1
2y

2
2 (2)

the dynamical system (10) in [2] has the form

dy1

dt
= y3

1 + 2y1y2 − x1,
dy2

dt
= y2

1 + y2 − x2 (3)

and the caustic is the semicubical parabola

|x1| = 4

3

√
2

3
x

3/2
2

defined for x2 ≥ 0.

Proposition 3.1. The bifurcation diagram of a small perturbation of the cusp, supported on a
sufficiently small compact set W, has the following features, outlined in Fig. 1:

1. for |x1| > 4
3

√
2
3x

3/2
2 (“outside” the caustic), ∇fx has only one critical point: a saddle;

for |x1| < 4
3

√
2
3x

3/2
2 (“inside” the caustic), ∇fx has three critical points: two saddles, s1

and s2, and a node n;
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Fig. 1. The bifurcation diagram of a small perturbation of the cusp.

for x1 = 4
3

√
2
3x

3/2
2 (the l1 branch of the caustic), ∇fx has two critical points: the saddle

s2 and the saddle-node ns1;

for x1 = − 4
3

√
2
3x

3/2
2 (the l2 branch of the caustic), ∇fx has two critical points: the saddle

s1 and the saddle-node ns2;
at (0, 0) (the vertex of the cusp), ∇fx has a degenerate critical point ns1s2;

2. if non-empty, B lies inside the caustic; moreover there exist a neighbourhood U of the vertex
of the cusp inside the caustic such that U ∩ B = ∅; in W, Bij , if non-empty, can contain lines,
half-lines with origin at a point of li, segments with both the extremes on li or immersed S1’s;
Bij ∩ Bji = ∅, while two components B1

ij and B2
ij of Bij can intersect provided the saddle-to-

saddle separatrices γsisj of the vector fields corresponding to points ofB1
ij andB2

ij are obtained
as intersection of the same pair of separatrices of s1 and s2.

Note that, while Lagrangian equivalent maps have diffeomorphic caustics, their bifurcation
loci in general are not diffeomorphic. Note also that no bifurcation line has the vertex of the cusp
as limit point.

Proof.

1. All the statements follow from a direct computation of roots of ∇fx and from the study of the
sign of eigenvalues of the linearization of ∇fx in a neighbourhood of its critical points.

2. Bifurcation points, if they exist, lie only inside the caustic, where at least two saddles exist.
Since, if non-empty and far from the caustic, the components of Bij are immersed submanifold
of codimension 1, it follows that they can be either lines, half-lines with origin on the caustic,
segments with extremes on the caustic, or immersed S1’s.

Suppose B̄ij ∩ lj �= ∅ and take p ∈ B̄ij ∩ lj , then, by Proposition (4.14) in [2], there exists an
open subset V such that p ∈ ∂V and the phase portrait of ∇fx, for x ∈ V , does not exhibit the
gradient line γnsj ; when x moves along a path in V ending at p, n and sj glue together at p forming
the degenerate critical point nsj , and so in the phase portrait of ∇fp there would be two gradient
lines with opposite directions joining nsj and si, which is not possible, as shown in the proof of
Corollary (4.13) in [2].

Suppose the vertex v of the cusp belongs to B̄, then moving along paths ending at v contained
into different connected components determined by B, the phase portrait of ∇fv would depend
on these paths, giving a contradiction.
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The statement about the intersection of components of B is a consequence of Corollary (4.18)
in [2].

Finally, if W is sufficiently small, Theorem (4.30) in [2] ensures in W the existence of a
generating function having a bifurcation diagram with such features. �

4. The elliptic umbilic

Consider the elliptic umbilic in dimension 2, whose generating function is

f (y1, y2) = y3
1 − y1y

2
2 (4)

The system (10) in [2] takes the form

dy1

dt
= y2

1 − y2
2 − x1,

dy2

dt
= −2y1y2 − x2 (5)

Proposition 4.1. The bifurcation locus B of (5) consists of three half-lines, with equations given
by t → t eiα, for α = 0, 2π/3, 4π/3, and t > 0, and is represented in Fig. 2.

Proof. For (x1, x2) �= (0, 0), system (5) has two critical points: the saddles s1 and s2

s1 =

⎛
⎜⎜⎝

√√√√√
x2

1 + x2
2

2
+ x1,−sgn(x2)

√√√√√
x2

1 + x2
2

2
− x1

⎞
⎟⎟⎠ ,

s2 =

⎛
⎜⎜⎝−

√√√√√
x2

1 + x2
2

2
+ x1, sgn(x2)

√√√√√
x2

1 + x2
2

2
− x1

⎞
⎟⎟⎠

(on the caustic (x1, x2) = (0, 0), s1 and s2 glue together in a two-fold saddle, also called saddle of
multiplicity 2). Note that s1 and s2 are symmetric with respect to the origin. Moreover, let (ρ, θ) and
(r, α) be polar coordinates in the (y1, y2)-plane and (x1, x2)-plane respectively; suppose x2 > 0
for simplicity, then the phase of the saddles depends on the phase of the parameter (x1, x2) as

Fig. 2. The bifurcation diagram of the elliptic umbilic in dimension 2.
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follows:

tg θ = y2

y1
= x1

x2
−

√(
x1

x2

)2

+ 1 = cosα− 1

sin α
= tg

(
−α

2

)
This means that rotating the point (x1, x2) clockwise of an angleα, the saddles rotate anti-clockwise
of an angle α/2. Observe also that system (5) can be scaled, in the sense that, if y(t) is a solution
of (5) corresponding to x, then ỹ(t) = 1

λ
y( t
λ

) is a solution of (5) corresponding to x/λ2. So if a
saddle-to-saddle separatrix exists for a given x, then it exists also for a positive multiple of x. This
implies that the bifurcation locus is formed by rays with source in (0, 0).

Note also that if y(t) is a solution of (5) then −y(t) is also a solution of (5). In particular, if a
saddle-to-saddle separatrix exists, being the two saddles symmetric with respect to the origin, it
implies that the saddle-to-saddle separatrix itself is symmetric with respect to the origin.

In polar coordinates, the generating function is written as

f (ρ, θ) = ρ3 cos θ
(

1
3 cos2 θ − sin2 θ

)
and (5) as

dρ

dt
= ρ2 cos(3θ) − r cos(θ − α),

dθ

dt
= ρ2 sin(3θ) + r sin(θ − α) (6)

We look for solutions through the origin whose image is a straight line, imposing the condition θ
constant. In order to get a non-constant solution, the second equation of (6) implies that

sin(3θ) = 0, sin(θ − α) = 0 (7)

These equations are solved by θ = kπ/3, with k ∈ Z, and α = θ + hπ, with h ∈ Z. Only for k
even we get a saddle-to-saddle separatrix. So B contains at least the half-lines with phase 0, 2π/3
and 4π/3. Numerical evidences suggest that no other half-line from the origin belongs to B. �

Remark 4.2. Fukaya in [1] proposed a conjecture according to which the bifurcation locus is
isotopic to a set of certain integral curves of the gradient field of the multivalued function

x 	→
∫
D2
u∗ω

where u is a pseudo-holomorphic disc bounded by the fibre over x and by the given Lagrangian
submanifold. In this particular case the conjecture is verified.

The next step is to determine the bifurcation diagram when a small perturbation is added. A
first result is Lemma 4.3, which gives information about the structure of the bifurcation locus
outside a disc containing the caustic.

Lemma 4.3. The bifurcation locus B(f̃ ) of a small perturbation f̃ = f + f ′ of f is, outside a
compact subset D containing the support of f ′, diffeomorphic to the bifurcation locus B(f ) of f.

Proof. We reason as in Proposition 4.10. We repeat here again the argument. Let x0 ∈ B(f ) \D,
and call γ the saddle-to-saddle separatrix between the saddles s1(x0) and s2(x0) of ∇fx0 . Consider
a transversal γ⊥ to γ , identify γ⊥ with some interval (a, b), and set, for every point x, h(x) =
Wu(s1(x)) ∩ γ⊥ and k(x) = Ws(s2(x)) ∩ γ⊥ (note that, since x  D, f ′

x = 0, thus s1(x) and s2(x)
are also saddles of ∇f̃x). This defines a mapψf : U(x0) → R,ψf (x) = h(x) − k(x), whereU(x0)
is a suitably small disc around x0. The bifurcation locus is the subset ψ−1

f (0). Note that, since
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Fig. 3. The bifurcation diagram of a perturbation of the elliptic umbilic by a polynomial of degree 2.

U(x0) \ ψ−1
f (0) has two connected component corresponding to different signs of ψf , the map

ψf̃ , defined for a small perturbation f̃ of f, still attain the value 0 at a certain point x̃. Moreover,
since ψ is a submersion at x0, it is transversal to 0, and the point x̃ is unique. �

It remains to study the bifurcation diagram near the caustic. We proceed by first determining the
allowed bifurcation diagrams, then Theorem (4.30) in [2] will ensure the existence of perturbations
of f exhibiting such diagrams. As a first step, consider a perturbation given by a polynomial of
degree 2, for example f ′(y1, y2) = 1

2 (y2
1 + y2

2): the generating function is

f̃ (y1, y2) = 1
3y

3
1 − 2y1y

2
2 + 1

2 (y2
1 + y2

2) (8)

and (5) becomes

dy1

dt
= y2

1 − y2
2 + y1 − x1,

dy2

dt
= −2y1y2 + y2 − x2 (9)

This is the only case where some computation is still feasible.

Proposition 4.4. The bifurcation locus of (8) contains at least three half-lines departing from each
vertex of the caustic, given by t → t eiα, for α = 0, 2π/3, 4π/3, t > 0, and represented in Fig. 3.

Proof. If x2 = 0 we find the following critical points: s1 =
(

1
2 ,

√
3
4 − x1

)
and s2 =(

1
2 ,−

√
3
4 − x1

)
, defined for x1 ≤ 3

4 , and s3 =
(−1−√

1+4x1
2 , 0

)
and n =

(−1+√
1+4x1

2 , 0
)

, de-

fined for x1 ≥ − 1
4 . Linearizing (9) at these points, we see that s1, s2 and s3 are saddles, while n is

an unstable node for − 1
4 ≤ x1 <

3
4 and a saddle for x1 >

3
4 . The points s1, s2 and n at x1 = 3

4 , a
vertex of the tricuspoid, glue together into a degenerate critical point, which, for x1 >

3
4 , turns into

a simple (non-degenerate) saddle. Instead, at x1 = − 1
4 , s3 and n glue together into a saddle-node,

which disappears for x1 ≥ − 1
4 . This implies that, for (x1, x2) inside the caustic, system (9) has

four critical points, three saddles and an unstable node, while outside the caustic there are two
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saddles. On each side of the caustic the node glues together with one of the three saddles, forming
a degenerate critical point which disappears outside the caustic.

A gradient line γns3 from n to s3 can be explicitly computed, implying that the half-line

x2 = 0, x1 >
3
4 , belongs to the bifurcation locus: setting p = −1+√

1+4x1
2 and q = −1−√

1+4x1
2 ,

and choosing as initial condition a point on the y1-axis between p and q, for example 0, γns3 is
given by

y1(t) = pq
1 − e(p−q)t

q− p e(p−q)t , y2(t) = 0

The existence of the remaining bifurcation half-lines, having the other vertexes of the caustic as
limit point, can be proved in a similar way. �
Corollary 4.5. If f ′ is a generic polynomial of degree 2, up to translations, the bifurcation
diagram of f̃ = f + f ′ is represented in Fig. 3.

Proof. As done in Subsection (3.1) of [2], we can reduce to the hypothesis of Proposition 4.4 as
a consequence of a suitable translation. �

Before analysing a generic small perturbation of the elliptic umbilic (4), consider a generic
small perturbations of (8).

Proposition 4.6. The bifurcation locus of a small perturbation of (8), shown in Fig. 4, has the
following features:

1. outside a compact subset containing the caustic K, there exist three bifurcation lines (as for
the unperturbed elliptic umbilic);

2. generically, these half-lines intersect K at a point of one of its sides near a vertex and have as
extreme a fold point on the opposite side of K, near the same vertex;

3. as already described for the cusp in Proposition 3.1, inside K also immersed S1’s or segments,
with extremes on the same side of K, may appear as components of the bifurcation locus;

Proof. The structure of the bifurcation locus far from K, as described at point 1, is a direct con-
sequence of Lemma 4.3. This, together with Proposition (4.10) in [2], implies that the bifurcation
locus contains half-lines with extreme on the caustic. If x is a cusp (a vertex) of K, then ∇f̃x
has a saddle si and a degenerate critical point nsjsk. Suppose a bifurcation line B has x as limit
point, then, for all t ∈ B ∩N, where N is a neighbourhood of the vertex x, the field ∇f̃t exhibits
a saddle-to-saddle separatrix γt , and, at the limit point x, a gradient line γv exists between si and
nsjsk. Since γt is unstable, also γv is unstable. Thus, generically, the limit point of a bifurcation
line is a fold of K. That a bifurcation half-line B intersects K on a side li and has a limit point on
one of the opposite sides lj , is a consequence of the fact that the exceptional gradient line γsjsk ,
exhibited by ∇f̃x for x ∈ B, breaks when one of the points sj or sk glues together with the node
n in a saddle-node, but this happens just when x belongs to one of the opposite sides to li. The
argument to prove point 3 is the same given for the cusp in Proposition 3.1. The proposition now
follows from Theorem (4.30) in [2]. �

The final step is to determine the bifurcation locus of a generic perturbation of (4). The be-
haviour of the bifurcation locus outside the caustic is determined by Lemma 4.3. The idea to study
how the bifurcation locus looks inside the caustic K is as follows: we consider diagrams represent-
ing all the possible mutual positions of three bifurcation half-lines inside K, having an extreme
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Fig. 4. The bifurcation diagram of a small perturbation of a perturbation by a polynomial of degree 2 of the elliptic
umbilic.

on a certain side of K and intersecting further K at a point of the remaining sides, first assuming
that such lines do not intersect, and we study which among such diagrams are allowed; then we
do the same assuming bifurcation lines can intersect; finally, Theorem (4.30) in [2] ensures the
existence of a function f̃ giving rise to such bifurcation diagrams.

As before we denote by n and si, i = 1, 2, 3, the node and the saddles of ∇f̃x, for x lying inside
the caustic. Let li, for i = 1, 2, 3, be the side of the caustic where the saddle si glues together with
n. Observe that if a bifurcation half-lineB intersects the side li of the caustic and has its extreme on
the opposite side lj , it means that, for x ∈ B, ∇f̃x exhibits in its phase portrait the saddle-to-saddle
separatrix γsjsk , from sj to sk, with k ∈ {1, 2, 3} \ {i, j}: in other words, B ⊂ Bjk. Assume that
bifurcation lines do not intersect. In this case, all the possible diagrams are drawn in Fig. 5.

Lemma 4.7. Among diagrams in Fig. 5, only (A), (B), (C), (D), (G), (L), (M), (N) are allowed.

Proof. In all diagrams, the subset ∗ is the one bounded by all the sides of the caustic. For every
x ∈ ∗, the phase portrait of ∇f̃x contains all the gradient lines γnsi , i = 1, 2, 3: indeed, as already
explained in the proof of Proposition 3.1, if γnsi were missing, then, for x belonging to the side li
of the caustic bounding ∗,∇f̃x would exhibit two gradient lines between the nsi and one of the
remaining saddles, implying a contradiction. The lemma follows now from Proposition (4.19) in
[2] with considerations as those in Subsection (4.5) of [2]. �

We study now the possibility of intersection between bifurcation lines. The possible intersec-
tions, depending on the positions of bifurcation lines, are listed in Fig. 6.

In all these diagrams, the third bifurcation half-line, which is not shown, has a position such
that the resulting bifurcation diagram is among those allowed by Lemma 4.7. In what follows, l1
denotes the left side of the caustic, l2 its upper side and l3 its lower side.

Consider (a) (see Fig. 7).

Proposition 4.8. The intersection of bifurcation lines of (a) gives an allowed bifurcation diagram
provided ∇f̃x exhibits, at points of both bifurcation lines, a saddle-to-saddle separatrix obtained
by joining the same pair of separatrices.
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Proof. The result follows from Lemma (4.18) in [2]. At points of bifurcation lines the gradient
line γs2s1 appears in the phase portrait of ∇f̃x, however this can occur in three ways:

(1) the non-generic gradient line γs2s1 in both bifurcations is obtained by joining the same pair
of separatrices; the phase portrait of ∇f̃x for x ∈ α is the same as the one for x ∈ γ and it
contains the gradient line γns1 , which disappears for x ∈ β (see Fig. 8);

Fig. 5. Possible mutual positions of non-intersecting bifurcation lines inside the caustic.
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Fig. 5. (Continued ).

(2) the non-generic gradient line γs2s1 is obtained by joining different pairs of separatrices; the
phase portrait of ∇f̃x for x ∈ α differs from the one for x ∈ γ (see Fig. 9);

(3) the non-generic gradient line γs2s1 in both bifurcations is obtained by joining the same pair of
separatrices; the phase portrait of ∇f̃x for x ∈ α is the same as the one for x ∈ γ and it never
contains the gradient line γns1 (see Fig. 10).

The intersection is allowed only in cases (1) and (3). The phase portrait of ∇f̃x for x ∈ δ
is equivalent to the one of ∇f̃x for x ∈ β. �

Consider (b) (see Fig. 11)

Proposition 4.9. The intersection of bifurcation lines of (b) gives rise to an allowed bifurcation
diagram.

Proof. The phase portrait of ∇f̃x, for x in α, exhibits all the gradient lines γnsi , for i = 1, 2, 3,
because α is bounded by all the sides li of the caustic (see Fig. 12).

The phase portrait of ∇f̃x, for x in β and for x in γ , are represented in figure below: from α to
β the gradient line γs2s1 appears and γns1 breaks; from α to γ the gradient line γs2s3 appears and
γns3 breaks (see Fig. 13).
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Fig. 6. Possible cases of intersection of bifurcation lines.

The bifurcations from β to δ and from γ to δ, in principle, can occur into two different ways, as
explained in Section (4.5) of [2]. However, the way gradient lines γns3 and γns1 wind around the
node to provide the bifurcations is fixed by the phase portrait of ∇f̃t , where t is the intersection
point of the bifurcation lines. This is in turn determined by the bifurcations from α to β and from
α to γ , and showed in Fig. 14.

Fig. 7. Intersection of bifurcation lines: case (a).
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Fig. 8. The bifurcation from α to β and from β to γ , respectively: 1st possibility.

The phase portrait of ∇f̃x, for x in δ, is unambiguously determined (and shown in Fig. 15).
The intersection is permitted.

Consider now (c) (see Fig. 16). �

Proposition 4.10. Bifurcation lines of case (c) can intersect, however the new bifurcation diagram
is allowed provided it also contains a new bifurcation line, from the intersection point to l2 and

Fig. 9. The bifurcation from α to β and from β to γ , respectively: 2nd possibility.
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Fig. 10. The bifurcation from α to β and from β to γ , respectively: 3rd possibility.

Fig. 11. Intersection of bifurcation lines: case (b).

lying inside β, at whose points the phase portrait of ∇f̃x exhibits a non-generic gradient line γs1s3
from s1 to s3. The bifurcation locus after the intersection is shown in Fig. 17.

Proof. Whatever the position of the third bifurcation half-line is, the phase portrait of ∇f̃x, for
x in α, exhibits all the gradient lines γnsi , for i = 1, 2, 3 (see Fig. 18).

Fig. 12. The phase portrait of ∇f̃x for x ∈ α.
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Fig. 13. The phase portrait of ∇f̃x for x ∈ β and x ∈ γ , respectively.

Fig. 14. The phase portrait of ∇f̃t where t is the intersection point of bifurcation lines.

There is only one way to perform the bifurcations from α to β and from α to γ , obtaining the
phase portrait showed in Fig. 19.

According to Proposition (4.19) in [2], in the phase portrait of ∇f̃x for x ∈ β, shown in Fig.
19, a gradient line from s1 to s3 would provide a non-allowed diagram, so β cannot be bounded
by the bifurcation line, shown in Fig. 16, separating β from δ. In γ , instead, the gradient line
γs2s1 gives an allowed bifurcation diagram, so the bifurcation line separating γ from δ is allowed.
The bifurcation line separating δ from β produces an allowed bifurcation diagram, because the
gradient line γs1s3 can appear in phase portrait δ, though this implies for x ∈ β a phase diagram
of ∇f̃x different from that shown in Fig. 19. However, as already explained in Subsection (4.6)
of [2], we can suppose that the intersection point t ∈ B(2,1),(1,3) belongs also to B2,3, so a new
bifurcation line B′ arises: B′ is actually a segment with an extreme at the intersection point t and
the other extreme on l2, where the saddle s2 glues together with the node. At a point x ∈ B′,
a saddle-to-saddle separatrix γs2s3 appears in the phase portrait of ∇f̃x. Since the problem is
crossing the bifurcartion line from β to δ, we suppose that B′ lies inside β. Call ε the new subset
determined in the bifurcation diagram by B′, lying between β and δ. At points of B′, from β to ε,
in principle there are two ways to perform the bifurcation, that is, γs2s3 can be obtained by joining

Fig. 15. The phase portrait of ∇f̃x for x ∈ δ.
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Fig. 16. Intersection of bifurcation lines: case (c).

two different pairs of separatrices, however the choice is fixed, and shown in Fig. 20, by the phase
portrait of ∇f̃t , where t is the intersection point of bifurcation lines (see Fig. 23).

The bifurcation from ε to δ, being characterized by a non-generic gradient line γs1s3 in the
phase portrait of ∇f̃x, is allowed. Since such line appears in the phase portrait of ∇f̃t , where t
is the intersection point of bifurcation lines, the choice of the pair of separatices to be joined in
γs1s3 is thus determined (see Fig. 21).

For x belonging to the bifurcation line separating δ from γ , a non-generic gradient line γs2s1
must appear in the phase portrait of ∇f̃x: again, since such a line appears in the phase portrait of
∇f̃t , the choice of the pair of separatrices intersecting in γs2s1 is fixed (see Fig. 22).

The phase portrait of ∇f̃t , where t is the intersection point, is shown in Fig. 23. �

Remark 4.11. Observe that there are five ways to break the exceptional gradient lines appearing
in the phase portrait of ∇f̃t , shown in Fig. 23, as five are the bifurcation lines arising from the
intersection point in the bifurcation diagram in Fig. 16. Note that γs2s1 and γs1s3 , as already
explained in Subsection (4.6) of [2], can break in such a way to give rise to the exceptional
gradient line γs2s3 , which is not exhibited by any of phase portraits of ∇f̃x, for x belonging to the
bifurcation lines, when these do not intersect.

Fig. 17. The resulting bifurcation diagram after the intersection of bifurcation lines in case (c).
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Fig. 18. The phase portrait of ∇f̃x for x ∈ α.

Fig. 19. The phase portrait of ∇f̃x for x ∈ β and x ∈ γ , respectively.

Consider now (d) (see Fig. 24). Among those in Fig. 5, the only allowed diagram exhibiting
this configuration is (D).

Proposition 4.12. The bifurcation diagram resulting from the intersection of bifurcation lines of
(d) is not allowed.

Proof. If the intersection were allowed, then the phase portrait of ∇f̃t , where t is the intersection
point, would exhibit the gradient lines γns2 , γns3 and the non-generic gradient lines γs2s1 and γs3s1 ,
but such a vector field does not exist. �

Consider (e) (see Fig. 25).

Proposition 4.13. The bifurcation diagram resulting from the intersection of the bifurcation lines
of (e) is not allowed.

Proof. If the intersection were allowed, the phase portrait of ∇f̃t , when t is the intersection point,
would exhibit two non-generic gradient lines γs1s2 and γs2s1 , giving a contradiction. �

Fig. 20. The bifurcation from β to ε and the phase portrait of ∇f̃x for x ∈ ε.
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Fig. 21. The bifurcation from ε to δ and the phase portrait of ∇f̃x for x ∈ δ.

Fig. 22. The bifurcation from δ to γ and the phase portrait of ∇f̃x for x ∈ γ .

We realize that, inside the caustic, the bifurcation locus of a perturbation of the elliptic umbilic
can be rather complex. We can resume all the results in the following theorem:

Theorem 4.14. The bifurcation locus B of a small perturbation of the generating function (4) of
the elliptic umbilic in dimension 2 has the following features:

• outside a compact subset containing the caustic K, B exhibits three bifurcation half-lines;
• generically, these half-lines intersect K along one of its sides and have their extreme at a fold

point of one of the opposite sides;
• the allowed mutual positions of bifurcation lines and their possible intersections are described

by Lemma 4.7 and by Propositions 4.8–4.13;
• inside K, B can also contain immersed S1’s or segments, with extremes on the same side of K.

Fig. 23. The phase portrait of ∇f̃t where t is the intersection point of bifurcation lines.
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Fig. 24. Intersection of bifurcation lines: case (d).

Fig. 25. Intersection of bifurcation lines: case (e).
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